COMMUTATIVE ENERGETIC SUBSETS OF
BCK-ALGEBRAS

Abstract

The notions of a C-energetic subset and (anti) permeable C-value in BCK-algebras are introduced, and related properties are investigated. Conditions for an element t in $[0, 1]$ to be an (anti) permeable C-value are provided. Also conditions for a subset to be a C-energetic subset are discussed. We decompose BCK-algebra by a partition which consists of a C-energetic subset and a commutative ideal.

Keywords: S-energetic subset, I-energetic subset, C-energetic subset, (anti) fuzzy commutative ideal, (anti) permeable I-value, (anti) permeable C-value.

2010 Mathematics Subject Classification. 06F35, 03G25, 08A72.

1. Introduction

Jun et al. [3] introduced the notions of energetic (resp. right vanished, right stable) subsets and (anti) permeable values in BCK/BCI-algebras. Using the notion of (anti) fuzzy subalgebras/ideals of BCK/BCI-algebras, they investigated relations among subalgebras/ideals, energetic subsets, (anti) permeable values, right vanished subsets and right stable subsets.

*Corresponding author.
In this article, we introduce the notions of a C-energetic subset and (anti) permeable C-value in BCK-algebras, and investigate related properties. We provide conditions for an element t in $[0, 1]$ to be an (anti) permeable C-value. We also discuss conditions for a subset to be a C-energetic subset. We show that a BCK-algebra is decomposed by a partition which consists of a C-energetic subset and a commutative ideal.

2. Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki and was extensively investigated by several researchers.

An algebra $(X; *, 0)$ of type $(2, 0)$ is called a BCI-algebra it satisfies the following conditions

(I) $(\forall x, y, z \in X) \ ((x \ast y) \ast (x \ast z)) \ast (z \ast y) = 0$,
(II) $(\forall x, y \in X) \ ((x \ast (x \ast y)) \ast y = 0)$,
(III) $(\forall x \in X) \ (x \ast x = 0)$,
(IV) $(\forall x, y \in X) \ (x \ast y = 0, y \ast x = 0 \Rightarrow x = y)$.

If a BCI-algebra X satisfies the following identity

(V) $(\forall x \in X) \ (0 \ast x = 0)$,

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following axioms

$$
(\forall x \in X) \ (x \ast 0 = x), \tag{2.1}
$$
$$
(\forall x, y, z \in X) \ (x \leq y \Rightarrow x \ast z \leq y \ast z, z \ast y \leq z \ast x), \tag{2.2}
$$
$$
(\forall x, y, z \in X) \ ((x \ast y) \ast z = (x \ast z) \ast y), \tag{2.3}
$$
$$
(\forall x, y, z \in X) \ ((x \ast z) \ast (y \ast z) \leq x \ast y), \tag{2.4}
$$

where $x \leq y$ if and only if $x \ast y = 0$. A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if $x \ast y \in S$ for all $x, y \in S$. A subset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies

$$
0 \in I, \tag{2.5}
$$
$$
(\forall x \in X) \ (\forall y \in I) \ (x \ast y \in I \Rightarrow x \in I). \tag{2.6}
$$

A subset I of a BCK-algebra X is called a commutative ideal (see [5]) of X if it satisfies (2.5) and

$$
(\forall x, y \in X) \ (\forall z \in I) \ ((x \ast y) \ast z \in I \Rightarrow x \ast (y \ast (y \ast x)) \in I). \tag{2.7}
$$
Observe that every commutative ideal is an ideal, but the converse is not true (see [6]).

We refer the reader to the books [2, 6] for further information regarding BCK/BCI-algebras.

The concept of fuzzy sets was introduced by Zadeh [7]. Let \(X \) be a set. The mapping \(f : X \rightarrow [0, 1] \) is called a fuzzy set in \(X \).

A fuzzy set \(f \) in a BCK/BCI-algebra \(X \) is called a fuzzy subalgebra of \(X \) if it satisfies

\[
(\forall x, y \in X) \ (f(x * y) \geq \min\{f(x), f(y)\}). \tag{2.8}
\]

A fuzzy set \(f \) in a BCK/BCI-algebra \(X \) is called a fuzzy ideal of \(X \) if it satisfies

\[
(\forall x \in X) \ (f(0) \geq f(x)). \tag{2.9}
\]
\[
(\forall x, y \in X) \ (f(x) \geq \min\{f(x * y), f(y)\}). \tag{2.10}
\]

Note that every fuzzy ideal \(f \) of a BCK/BCI-algebra \(X \) satisfies

\[
(\forall x, y \in X) \ (x \leq y \Rightarrow f(x) \geq f(y)). \tag{2.11}
\]

A fuzzy set \(f \) in a BCK-algebra \(X \) is called a fuzzy commutative ideal (see [4]) of \(X \) if it satisfies (2.9) and

\[
(\forall x, y, z \in X) \ (f(x * (y * (y * x))) \geq \min\{f((x * y) * z), f(z)\}). \tag{2.12}
\]

For a fuzzy set \(f \) in \(X \) and \(t \in [0, 1] \), the (strong) upper (resp. lower) \(t \)-level sets are defined as follows:

\[
U(f; t) := \{x \in X \mid f(x) \geq t\}, \quad U^*(f; t) := \{x \in X \mid f(x) > t\},
\]
\[
L(f; t) := \{x \in X \mid f(x) \leq t\}, \quad L^*(f; t) := \{x \in X \mid f(x) < t\}.
\]

3. Commutative energetic subsets

In what follows, let \(X \) denote a BCK-algebra unless otherwise specified.

Definition 3.1 ([3]). A non-empty subset \(A \) of \(X \) is said to be S-energetic if it satisfies

\[
(\forall a, b \in X) \ (a * b \in A \Rightarrow \{a, b\} \cap A \neq \emptyset). \tag{3.1}
\]

Definition 3.2 ([3]). A non-empty subset \(A \) of \(X \) is said to be I-energetic if it satisfies

\[
(\forall x, y \in X) \ (y \in A \Rightarrow \{x, y * x\} \cap A \neq \emptyset). \tag{3.2}
\]
Lemma 3.3 ([3]). For any subset A of X, if $X \setminus A$ is an ideal of X, then A is I-energetic.

Definition 3.4. A non-empty subset A of X is said to be commutative energetic (briefly, C-energetic) if it satisfies

$$(\forall x, y, z \in X) (x \ast (y \ast (y \ast x)) \in A \Rightarrow \{z, (x \ast y) \ast z\} \cap A \neq \emptyset). \quad (3.3)$$

Example 3.5. Let $X = \{0, 1, 2, 3, 4\}$ be a BCK-algebra with the following Cayley table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

It is routine to verify that $A := \{3, 4\}$ is a C-energetic subset of X.

We consider relations between an I-energetic subset and a C-energetic subset.

Theorem 3.6. Every C-energetic subset is I-energetic.

Proof: Let A be a C-energetic subset of X. Let $x, y \in X$ be such that $y \in A$. Then $y \ast (0 \ast (0 \ast y)) = y \in A$, and so $\{x, (y \ast 0) \ast x\} \cap A \neq \emptyset$ by (3.3). It follows from (2.1) that $\{x, y \ast x\} \cap A \neq \emptyset$. Hence A is an I-energetic subset of X.

The converse of Theorem 3.6 is not true as seen in the following examples.

Example 3.7. Let $X = \{0, 1, 2, 3, 4\}$ be a BCK-algebra with the following Cayley table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Take $A := \{1, 2, 4\}$. Then $X \setminus A = \{0, 3\}$ is an ideal of X. Hence, by Lemma 3.3, A is an I-energetic subset of X. But it is not C-energetic since
Since strong lower Corollary

Theorem 3.8. For any nonempty subset A of X, if $X \setminus A$ is a commutative ideal of X, then A is C-energetic.

Proof: Assume that A is not C-energetic. Then for any $x, y \in X$ with

$$x \ast (y \ast (y \ast x)) \in A,$$

there exists $z \in X$ such that \(\{z, (x \ast y) \ast z\} \cap A = \emptyset \). It follows that

$$(x \ast y) \ast z \in X \setminus A \quad \text{and} \quad z \in X \setminus A.$$

Since $X \setminus A$ is a commutative ideal of X, we have $x \ast (y \ast (y \ast x)) \in X \setminus A$, that is, $x \ast (y \ast (y \ast x)) \notin A$. This is a contradiction, and so A is a C-energetic subset of X. \(\square \)

Corollary 3.9. For any nonempty subset A of X, if $X \setminus A$ is a commutative ideal of X, then A is I-energetic.

Theorem 3.10. Let A be a nonempty subset of X with $0 \notin A$. If A is C-energetic, then $X \setminus A$ is a commutative ideal of X.

Proof: Obviously $0 \in X \setminus A$. Let $x, y, z \in X$ be such that $z \in X \setminus A$ and $(x \ast y) \ast z \in X \setminus A$. Assume that $x \ast (y \ast (y \ast x)) \in A$. Then \(\{z, (x \ast y) \ast z\} \cap A \neq \emptyset \) by (3.3), which implies that $z \in A$ or $(x \ast y) \ast z \in A$. This is a contradiction, and so $x \ast (y \ast (y \ast x)) \in X \setminus A$. This shows that $X \setminus A$ is a commutative ideal of X. \(\square \)

Corollary 3.11. Let A be a nonempty subset of X with $0 \notin A$. If A is C-energetic, then $X \setminus A$ is an ideal and hence a subalgebra of X.

Theorem 3.12. If f is a fuzzy commutative ideal of X, then the nonempty lower t-level set $L(f; t)$ is a C-energetic subset of X.

Proof: Assume that $L(f; t) \neq \emptyset$ for $t \in [0, 1]$. Let $x, y \in X$ be such that $x \ast (y \ast (y \ast x)) \in L(f; t)$. Then

$$t \geq f(x \ast (y \ast (y \ast x))) \geq \min\{f((x \ast y) \ast z), f(z)\}$$

for all $z \in X$, which implies that $f((x \ast y) \ast z) \leq t$ or $f(z) \leq t$, that is, $(x \ast y) \ast z \in L(f; t)$ or $z \in L(f; t)$. Thus \(\{z, (x \ast y) \ast z\} \cap L(f; t) \neq \emptyset \), and therefore $L(f; t)$ is a C-energetic subset of X. \(\square \)

Corollary 3.13. If f is a fuzzy commutative ideal of X, then the nonempty strong lower t-level set $L^*(f; t)$ is a C-energetic subset of X.

Since $L(f; t) \cup U^*(f; t) = X$ and $L(f; t) \cap U^*(f; t) = \emptyset$ for all $t \in [0, 1]$, we have the following corollary.
Corollary 3.14. If f is a fuzzy commutative ideal of X, then $U^*(f; t)$ is empty or a commutative ideal of X for all $t \in [0, 1]$.

Definition 3.15 ([1]). A fuzzy set f in X is called an anti fuzzy ideal of X if it satisfies

$$\forall x \in X \ (f(0) \leq f(x)). \ \ (3.4)$$

$$\forall x, y \in X \ (f(x) \leq \max\{f(x * y), f(y)\}). \ \ (3.5)$$

Definition 3.16. A fuzzy set f in X is called an anti fuzzy commutative ideal of X if it satisfies (3.4) and

$$\forall x, y, z \in X \ (f(x * (y * (y * x))) \leq \max\{f((x * y) * z), f(z)\}). \ \ (3.6)$$

Example 3.17. Consider a BCK-algebra $X = \{0, a, b, c\}$ with the following Cayley table

\[
\begin{array}{c|cccc}
 * & 0 & a & b & c \\
\hline
 0 & 0 & 0 & 0 & 0 \\
 a & a & 0 & 0 & a \\
b & b & a & 0 & b \\
c & c & c & c & 0 \\
\end{array}
\]

Define a fuzzy set f in X as follows

$$f : X \to [0, 1], \ x \mapsto \begin{cases}
 t_0 & \text{if } x = 0, \\
 t_1 & \text{if } x = c, \\
 t_2 & \text{if } x \in \{a, b\}
\end{cases}$$

where $t_0 < t_1 < t_2$ in $[0, 1]$. It is routine to verify that f is an anti fuzzy commutative ideal of X.

Theorem 3.18. Every anti fuzzy commutative ideal is an anti fuzzy ideal.

Proof: Let f be an anti fuzzy commutative ideal of X. If we put $y = 0$ in (3.6), then

$$\max\{f(x * z), f(z)\} = \max\{f((x * 0) * z), f(z)\} \geq f(x * (0 * (0 * x))) = f(x).$$

Hence f is an anti fuzzy ideal of X. \qed

The converse of Theorem 3.18 is not true as seen in the following example.
Example 3.19. Let $X = \{0, 1, 2, 3, 4\}$ be a BCK-algebra with the following Cayley table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a fuzzy set f in X as follows

$$f : X \rightarrow [0, 1], \quad x \mapsto \begin{cases} s_0 & \text{if } x = 0, \\ s_1 & \text{if } x = 1, \\ s_2 & \text{if } x \in \{2, 3, 4\} \end{cases}$$

where $s_0 < s_1 < s_2$ in $[0, 1]$. Then f is an anti fuzzy ideal of X. But it is not an anti fuzzy commutative ideal of X since

$$f(2 \ast (3 \ast (3 \ast 2))) \not\leq \max\{f(0), f((2 \ast 3) \ast 0)\}.$$

We provide a characterization of an anti fuzzy commutative ideal.

Theorem 3.20. For a fuzzy set f in X, the following are equivalent.

1. f is an anti fuzzy commutative ideal of X.
2. f is an anti fuzzy ideal of X satisfying the following condition

$$(\forall x, y \in X) \ (f(x \ast (y \ast (y \ast x)))) \leq f(x \ast y)). \quad (3.7)$$

Proof: Assume that f is an anti fuzzy commutative ideal of X. Then f is an anti fuzzy ideal of X (see Theorem 3.18). Taking $z = 0$ in (3.6) and using (3.4) and (2.1), we have (3.7).

Conversely, suppose that (2) is valid. Then

$$f(x \ast y) \leq \max\{f((x \ast y) \ast z), f(z)\} \quad (3.8)$$

for all $x, y, z \in X$. Combining (3.7) and (3.8), we get (3.6). The proof is complete.

Definition 3.21 ([3]). Let f be a fuzzy set in X. A number $t \in [0, 1]$ is called a permeable I-value for f if $U(f; t) \neq \emptyset$ and the following assertion is valid.

$$(\forall x, y \in X) \ (f(y) \geq t \Rightarrow \max\{f(y \ast x), f(x)\} \geq t). \quad (3.9)$$
Definition 3.22. Let f be a fuzzy set in X. A number $t \in [0,1]$ is called a permeable C-value for f if $U(f; t) \neq \emptyset$ and the following assertion is valid.

$$f(x \ast (y \ast (y \ast x))) \geq t \Rightarrow \max\{f((x \ast y) \ast z), f(z)\} \geq t \quad (3.10)$$

for all $x, y, z \in X$.

Example 3.23. Consider a BCK-algebra $X = \{0, a, b, c\}$ which is given in Example 3.17. Let f be a fuzzy set in X defined by $f(0) = 0.3$, $f(a) = f(b) = 0.7$ and $f(c) = 0.5$. If $t \in (0.5, 0.7]$, then $U(f; t) = \{a, b\}$ and it is easy to check that t is a permeable C-value for f.

Theorem 3.24. Let f be a fuzzy commutative ideal of X. If $t \in [0,1]$ is a permeable C-value for f, then the nonempty upper t-level set $U(f; t)$ is a C-energetic subset of X.

Proof: Assume that $U(f; t) \neq \emptyset$ for $t \in [0,1]$. Let $x, y \in X$ be such that $x \ast (y \ast (y \ast x)) \in U(f; t)$. Then $f(x \ast (y \ast (y \ast x))) \geq t$, and so $\max\{f((x \ast y) \ast z), f(z)\} \geq t$ by (3.10). It follows that $f((x \ast y) \ast z) \geq t$ or $f(z) \geq t$, that is, $(x \ast y) \ast z \in U(f; t)$ or $z \in U(f; t)$. Hence $\{z, (x \ast y) \ast z\} \cap U(f; t) \neq \emptyset$, and therefore $U(f; t)$ is a C-energetic subset of X.

Since $U(f; t) \cup L^*(f; t) = X$ and $U(f; t) \cap L^*(f; t) = \emptyset$ for all $t \in [0,1]$, we have the following corollary.

Corollary 3.25. Let f be a fuzzy commutative ideal of X. If $t \in [0,1]$ is a permeable C-value for f, then $L^*(f; t)$ is empty or a commutative ideal of X.

Theorem 3.26. For a fuzzy set f in X, if there exists a subset K of $[0,1]$ such that $\{U(f; t), L^*(f; t)\}$ is a partition of X and $L^*(f; t)$ is a commutative ideal of X for all $t \in K$, then t is a permeable C-value for f.

Proof: Assume that $f(x \ast (y \ast (y \ast x))) \geq t$ for any $x, y \in X$. Then $x \ast (y \ast (y \ast x)) \in U(f; t)$, and so $\{z, (x \ast y) \ast z\} \cap U(f; t) \neq \emptyset$ since $U(f; t)$ is a C-energetic subset of X. It follows that $z \in U(f; t)$ or $(x \ast y) \ast z \in U(f; t)$ and so that

$$\max\{f((x \ast y) \ast z), f(z)\} \geq t.$$

Therefore t is a permeable C-value for f.

Theorem 3.27. Let f be a fuzzy set in X with $U(f; t) \neq \emptyset$ for $t \in [0,1]$. If f is an anti fuzzy commutative ideal of X, then t is a permeable C-value for f.

Young Bae Jun, Eun Hwan Roh and Seok Zun Song
Proof: Let \(x, y, z \in X \) be such that \(f(x \ast (y \ast (y \ast x))) \geq t \). Then
\[
t \leq f(x \ast (y \ast (y \ast x))) \leq \max\{f((x \ast y) \ast z), f(z)\}
\]
by (3.6). Hence \(t \) is a permeable \(C \)-value for \(f \).

Theorem 3.28. If \(f \) is an anti fuzzy commutative ideal of \(X \), then
\[
(\forall t \in [0, 1]) \ (U(f; t) \neq \emptyset \Rightarrow U(f; t) \text{ is a } C\text{-energetic subset of } X).
\]
Proof: Let \(x, y, z \in X \) be such that \(x \ast (y \ast (y \ast x)) \in U(f; t) \). Then
\[
f(x \ast (y \ast (y \ast x))) \geq t,
\]
which implies from (3.6) that
\[
t \leq f(x \ast (y \ast (y \ast x))) \leq \max\{f((x \ast y) \ast z), f(z)\}.
\]
Hence \(f((x \ast y) \ast z) \geq t \) or \(f(z) \geq t \), that is, \((x \ast y) \ast z \in U(f; t) \) or \(z \in U(f; t) \). Thus \(\{z, (x \ast y) \ast z\} \cap U(f; t) \neq \emptyset \), and therefore \(U(f; t) \) is a \(C \)-energetic subset of \(X \).

Theorem 3.29. For any fuzzy set \(f \) in \(X \), every permeable \(C \)-value for \(f \) is a permeable \(I \)-value for \(f \).
Proof: Let \(t \in [0, 1] \) be a permeable \(C \)-value for \(f \). Assume that \(f(y) \geq t \) for all \(y \in X \). Then
\[
t \leq f(y) = f((y \ast (0 \ast (0 \ast y)))
\]
by (V) and (2.1), and so
\[
t \leq \max\{f((y \ast 0) \ast z), f(z)\} = \max\{f(y \ast z), f(z)\}
\]
for all \(y, z \in X \) by (3.10) and (2.1). Therefore \(t \) is a permeable \(I \)-value for \(f \).

Definition 3.30 ([3]). Let \(f \) be a fuzzy set in \(X \). A number \(t \in [0, 1] \) is called an anti permeable \(I \)-value for \(f \) if \(L(f; t) \neq \emptyset \) and the following assertion is valid.
\[
(\forall x, y \in X) \ (f(y) \leq t \Rightarrow \min\{f(y \ast x), f(x)\} \leq t). \tag{3.11}
\]

Theorem 3.31. Let \(f \) be a fuzzy set in \(X \) with \(L(f; t) \neq \emptyset \) for \(t \in [0, 1] \). If \(f \) is a fuzzy ideal of \(X \), then \(t \) is an anti permeable \(I \)-value for \(f \).
Proof: Let \(f(y) \leq t \) for \(y \in X \). Then
\[
\min\{f(y \ast x), f(x)\} \leq f(y) \leq t
\]
for all $x \in X$ by (2.10). Hence t is an anti permeable I-value for f. □

Definition 3.32. Let f be a fuzzy set in X. A number $t \in [0, 1]$ is called an anti permeable C-value for f if $L(f; t) \neq \emptyset$ and the following assertion is valid.

$$f(x \ast (y \ast (y \ast x))) \leq t \Rightarrow \min \{f((x \ast y) \ast z), f(z)\} \leq t \quad (3.12)$$

for all $x, y, z \in X$.

Theorem 3.33. Let f be a fuzzy set in X with $L(f; t) \neq \emptyset$ for $t \in [0, 1]$. If f is a fuzzy commutative ideal of X, then t is an anti permeable C-value for f.

Proof: Let $x, y \in X$ be such that $f(x \ast (y \ast (y \ast x))) \leq t$. Then

$$\min \{f((x \ast y) \ast z), f(z)\} \leq f(x \ast (y \ast (y \ast x))) \leq t$$

for all $z \in X$ by (2.12). Hence t is an anti permeable C-value for f. □

Theorem 3.34. Let f be an anti fuzzy commutative ideal of X. If $t \in [0, 1]$ is an anti permeable C-value for f, then the lower t-level set $L(f; t)$ is a C-energetic subset of X.

Proof: Let $x, y \in X$ be such that $x \ast (y \ast (y \ast x)) \in L(f; t)$. Then $f(x \ast (y \ast (y \ast x))) \leq t$ and so $\min \{f((x \ast y) \ast z), f(z)\} \leq t$ by (3.12). It follows that $(x \ast y) \ast z \in L(f; t)$ or $z \in L(f; t)$. Hence $\{z, (x \ast y) \ast z\} \cap L(f; t) \neq \emptyset$, and therefore $L(f; t)$ is a C-energetic subset of X. □

Corollary 3.35. Let f be an anti fuzzy commutative ideal of X. If $t \in [0, 1]$ is an anti permeable C-value for f, then $U^*(f; t)$ is empty or a commutative ideal of X.

Theorem 3.36. For a fuzzy set f in X, if there exists a subset K of $[0, 1]$ such that $\{U^*(f; t), L(f; t)\}$ is a partition of X and $U^*(f; t)$ is a commutative ideal of X for all $t \in K$, then t is an anti permeable C-value for f.

Proof: Assume that $f(x \ast (y \ast (y \ast x))) \leq t$ for any $x, y \in X$. Then

$$x \ast (y \ast (y \ast x)) \in L(f; t),$$

and so $\{z, (x \ast y) \ast z\} \cap L(f; t) \neq \emptyset$ for all $z \in X$ since $L(f; t)$ is a C-energetic subset of X. It follows that $f(z) \leq t$ or $f((x \ast y) \ast z) \leq t$, and so that

$$\min \{f((x \ast y) \ast z), f(z)\} \leq t.$$

Therefore t is an anti permeable C-value for f. □
Acknowledgement

The authors wish to thank the anonymous reviewer(s) for the valuable suggestions.

References

Department of Mathematics Education (and RINS)
Gyeongsang National University, Jinju 52828, Korea
e-mail: skywine@gmail.com

Department of Mathematics Education,
Chinju National University of Education, Jinju 660-756, Korea
e-mail: idealmath@gmail.com

Department of Mathematics,
Jeju National University, Jeju 690-756, Korea
e-mail: szsong@jejunu.ac.kr